RED LIST VERSION 3.0 SUSTAINABILITY ACTION PLAN The Miller Hull Partnership, LLP

MILLER HULL **RED LIST V3.0**

In connection with human health, it is important to know materials ingredients and their toxicity concerns, which is why we support the efforts behind emerging scientific data that continue to evolve our understanding of materials heatlh. As part of our Sustainability Action Plan, Miller Hull has comitted to removing Red List chemicals from our projects. Our list includes an effort to address chemical classes.

CHEMICAL CLASS	CHEMICAL / ELEMENT / MATERIAL
CHLORINATED POLYMERS	POLYVINYL CHLORIDE (PVC)
FLAME RETARDANTS	HALOGENATED FLAME RETARDANTS
PHTHALATES	PHTHALATES
FORMALDEHYDE (ADDED)	FORMALDEHYDE (ADDED)
BISPHENOL A (BPA)	BISPHENOL A (BPA)
TOXIC HEAVY METALS	HEXAVALENT CHROMIUM (HEX 6)
	LEAD
	MERCURY
PER- AND POLYFLUORALKYL SUBSTANCES	PER- AND POLYFLUORALYKL SUBSTANCES
(PFAS)	(PFAS)
ALKYLPHENOLS (APES) AND RELATED	ALKYLPHENOLS (APES)
COMPOUNDS	
WOOD TREATMENTS	CREOSOTE
	PNETACHLOROPHENOL

PRECAUTIONARY PRINCIPLE:

When an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause and effect relationships are not fully established scientifically.

IS IT WORTH IT? IŞ THERE A SAFER TERNATIVE?

Bullitt Center, Seattle, WA

CHLORINATED POLYMERS **POLYVINYL CHLORIDE (PVC)**

WHAT IS IT?

"Because infinitesimal doses of dioxin are enough to cause health damage, the only level of dioxin exposure that should be considered acceptable from a public health perspective is zero."

Joe Thornton, Environmental Impacts of Polyvinyl Chloride Building Materials¹⁵

- Polyvinyl Chloride, commonly abbreviated PVC, is the world's third-most widely produced synthetic plastic polymer. PVC is largely used in construction because it can be more effective in weight, cost, and performance than traditional materials such as copper, iron or wood in pipe applications.
- The production of PVC results in the release of toxins including **dioxins**. The burning of PVC results in the release of dioxins. Additives of PVC can be toxic to users. The manufacturing and incineration of PVC also creates and releases dioxins, which cause a wide range of health effects including cancer, birth defects, diabetes, learning and developmental delays, endometriosis, and immune system abnormalities. One type of dioxin present in PVC is the most potent carcinogen ever tested. These toxin's primary pathway into the human body is through inhalation.
- The chemicals present in PVC are known as persistent biocumulative toxins (PBT's) which mean they will persist in the environment and species around the world indefinitely. These are also commonly referred to as "forever chemicals."
- A common myth is that PVC can be recycled. PVC never completely breaks down in the environment, it cannot be recycled and interferes with the recycling of other plastics.¹

WHY DO WE CARE?

As architects, we care because...

- As one of the most common building products, PVC is a toxic chemical largely used in building materials such as pipes, electric cables, photo-effect wood finish, window frames and sills, fascia, siding, weather boarding, flooring, ceiling tiles, interior cladding, and more.
- Healthy Building Network research shows vinyl (PVC) is the number one driver of asbestos use in the US. The vinyl/asbestos connection stems from the fact that PVC production is the largest single use for industrial chlorine, and chlorine production is the largest single consumer of asbestos in the US.
- More than 70% of PVC is used in building and construction applications. This makes the building and construction industry the single largest product sector consuming chlorine, bearing sizable responsibility for the ongoing demand for asbestos.2

<u>&</u>

As building owners, we care because...

- Potential health and environmental hazards during the use phase could include the release of toxic substances from largely plasticized PVC products into the indoor or natural environment.
- · Studies have linked dust containing phthalates from homes with PVC flooring with an increase in asthma, rhinitis and eczema. The presence of PVC flooring in the child's bedroom was the strongest predictor of respiratory ailments.³
- The average American's exposure to the dioxin in PVC poses a calculated risk of cancer of greater than 1 in 1,000 - thousands of times greater than the usual standard for acceptable risk. The incidences were higher in multiple family dwellings where a higher percentage of PVC flooring was found.⁴
- The use of PVC as a building material contributes to the degradation of indoor air and is linked to respiratory symptoms in children and office workers. The plasticizers with which it is treated pose clear threats, at background level, to fetal development of the male reproductive tract and may also damage sperm cells in adult males.⁵
- Disposal Issue: Landfilling or burning of PVC causes toxic plasticizers and metal based stabilizers to leach into the environment through soil, water and air exposure.

HOW TO MAKE A CHANGE

While many health and environmental problems are associated with PVC, the construction industry has been unaware of its true cost and long considered it as a cheap convenient material. There exist a variety of cost effective materials with less health hazard to workers, building users, and the general public that perform equally well.7

"Exposure to a single PVC	anosure to a single PVC Alternative Options		
fire can cause permanent respiratory disease Due to its intrinsic hazards, we support efforts to identify and use alternative	Products with Vinyl	Safer Alternative Material	
	Piping	Cast Iron, Steel, Concrete Vitrified Clay, Lead-free Copper (interior only), HDPE (high density polyethylene),un-crosslinked PEX, Polypropylene	Depending on the plumbing application, a wide range of materials can be used to construct pipes for hot and cold potable water, as well as waste pipe and sanitary drains.
building materials that do not pose as much risk as PVC to fire fighters, building occupants or communities."	Resilient Flooring	Cork, Linoleum, Rubber	Cork and linoleum both source their primary ingredients from plants and natural minerals. Be sure to select a cork floor made without a PVC backing. While rubber flooring is based on styrene-butadiene chemistry and has a number of concerns, a 2009 evaluation of resilient flooring from the Healthy Building Network still indicated it as a preferred option over PVC.
of Fire Fighters ⁶	Carpet Backing	Polyvinyl Butyral (PVB)	Some carpet backing and other flooring products can contain a PVC backing. Be sure to ask the manufacturer for a product that has an alternative bio-based backing that is less harmful and persistent than PVC.
	Wall Covering	Textiles, Polyethylene	Fabrics offer an alternative to PVC wall coverings. Xorel, made by Carnegie Fabrics, features a polyethylene fabric made from sugar cane rather than petroleum.
	Wall Protection	Aluminum, Bio-based Polymers, Stainless Steel, Zinc	Metal sheeting and plates offer a simple alternative to PVC wall protection, while some corn-derived polymers are also entering the market.
	Window Blinds and Shades	Textiles, Polyethylene, Aluminum	When specifying fabric shades, avoid PVC- coated, stain resistant, anti-static, or other surface treatments that may introduce unwanted hazards. Anti-microbial coatings are not needed and have more harmful human health effects.
	Window Frames	Aluminum, Wood, Fiberglass	Wood, fiberglass and aluminum window frames are readily available in a variety of colors. Vinyl window frames have been found to have significant moisture infiltration and leaking failures years after installation leading to costly lawsuits, mold issues and high building energy uses.

As contractors, we care because...

• The greatest risk of exposure is to workers in production facilities and those who work with the products during construction, primarily through inhalation.

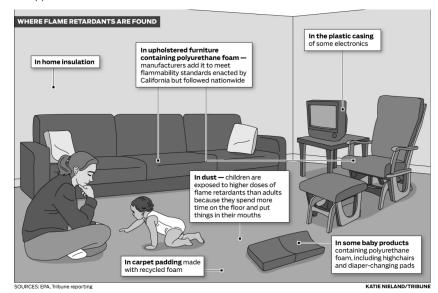
Table 1. Substitute Materials for Common PVC Building Components and Interior Finishes⁸

FLAME RETARDANTS HALOGENATED FLAME RETARDANTS

WHAT IS IT?

- Flame retardants are chemicals added to products to delay or prevent ignition and the spread of fire. They are used in levels of about 1% to 30% of the weight of foam or plastic found in products such as textiles, furniture, electronics, building insulation, baby products, surface finishes and coatings, wire and cable. Flame retardants are broadly classified into **halogenated** and non-halogenated flame retardants. Bromine, chlorine, fluorine and iodine, are the elements in the chemical group known as halogens.⁹
- Flame retardants are associated with reduced IQ (similar to lead poisoning), reduced fertility, birth defects, and hormonal changes. Many are similar in structure or even identical to banned chemicals such as DDT, Mirex and PCBs.¹⁰ When these products ignite, the chemicals can produce the toxic gases that cause most fire deaths and injuries.
- There is no significant fire safety benefit from HFRs.

WHY DO WE CARE?


- As architects, we care because...
- Halogenated flame retardants (HFR's) are used in building materials such as surface finishes and coatings.
- Our specifications have the power to drive market change for safer materials.
- Flame retardants can come into direct contact with building occupants.

6

As building owners, we care because...

- Flame retardants are a human health concern, and building users will have direct contact with building materials that contain Halogenated Flame Retardants.
- Product treated with HFR's are toxic and cannot be recycled. Thus, they are either burned or placed in landfills. When burned, toxins are released into the air; and when landfilled, toxins can leach into water and soil, affecting food and water supplies.11

HOW TO MAKE A CHANGE

"Instead of adding new fire

retardant chemicals that

ultimately may be shown

to cause health problems,

whether we need to use

these chemicals or if there

are other ways to achieve

equivalent fire safety..."

and visiting scholar at the University of

we should be asking

As contractors, we care because... Occupational exposure: HFR's release toxins during manufacturing, transportation, and construction process.

No, we do not need flame retardants for fire safety.

Alternative Options • Select fabrics, building insulation and furniture foams without HFR's.

- reduce stress and strain afterwards.¹⁶

• Surprisingly, flame retardants, as used to meet current standards for furniture and baby products, do not increase overall fire safety. While they may delay ignition a few seconds, they will eventually burn and can produce the toxic gases that cause most fire injuries and deaths.

 Halogenated Flame Retardants: HFRs are added to too many building materials – even when they are not needed. Fire scientists, toxicologists, and even firefighters are raising alarm bells around the world. There is no significant fire safety benefit from HFRs in foam or wiring behind walls or under concrete slabs, yet current US codes requires HFRs in these applications. Sadly, during a fire, HFRs release significantly more smoke and very toxic gases that harm/kill occupants and firefighters. The European Union has already banned some **HFRs**, but the US lags behind. There is currently a concerted effort in the green building movement to remove HFRs from materials when there is no added fire safety benefit.¹²

• Policy actions are taking such other factors into consideration. For example, the updated California Furniture Flammability Standard (TB117-2013), which has implemented in January 2014 is based on a smolder test for fabric, which is where the majority of fires begin. The new standard does not lead to the use of flame retardants, so it will now be possible to have increased fire safety without harmful chemicals.¹³

• To increase fire safety, there are insulation and furniture products available without HFR's.

• Alternatives-GREEN Flame Retardants: Compro FR-60

Compro FR-60-P is a safe, non toxic, non halogen, flame retardant. It is designed for flexible foams. They provide a variety of features for these coatings outside of excelled flame retardancy such as impact strength, flexibility, and water repellency. On saturated polyester resins cured with melamine such as our Compromel, Compro FR-60-P will impart film thickness and greater chemical resistance. In PET coatings it will facilitate cast and mold properties and

PHTHALATES

WHAT IS IT?

- Phthalates know as "plasticizers," are used to make plastics such as polyvinyl chloride (PVC) more flexible or resilient. They are a group of industrial chemicals used as esters of phthalic acid and are most commonly found in plastics and primarily in PVC as plasticizers to increase their flexibility, transparency, durability and longevity.²⁵
- Phthalates are used in a wide range of common products, from plastics to perfumes, and are easily released into the environment. Because they are not chemically bound to products, leaching, migration, and evaporation during use can occur, resulting in human exposure. Phthalates can be taken into the body in different ways, both through food, breathing and through the skin.
- Phthalates are suspected of disrupting hormones and may be related to several chronic diseases in children, like asthma and allergies. Some phthalates such as DEHP have been linked to reproductive problems including shorter pregnancy duration and premature breast development in girls and sperm damage and impaired reproductive development in boys. Some studies have also found a correlation between phthalates and obesity.²⁶

WHY DO WE CARE?

As architects, we care because...

- Building materials are the largest end use for PVC. Major uses of flexible PVC in buildings include carpet backing, resilient flooring, wall coverings, acoustical ceiling surfaces, upholstery textiles, roof membranes, waterproofing membranes, and electrical cord insulation. And they can be released from PVC in to the air. Phthalates can be found in other building products besides just PVC.²⁷
- The Environmental Protection Agency (EPA) currently lists 8 chemicals in their Phthalate Action Plan to evaluate and limit the use of.

6

As building owners, we care because...

- Phthalates cling to dust and can then be breathed in by building occupants with children being the most easily affected.
- · Occupants and tenants have many opportunities to come in direct contact with Phthalates.
- Phthalates are moderately persistent in the environment. They can be degraded biologically or chemically in the presence of air in days or weeks; in anaerobic conditions, like those often found in groundwater, little if any degradation occurs, with a hydrolysis half-life of 2000 years.²⁸

As contractors, we care because...

· Eating, breathing and skin contact, as well as blood transfusion, are all ways that Phthalates make their way into our bodies. Workers have direct contact with toxic Phthalates during construction and manufacturing process.

HOW TO MAKE A CHANGE

Alternative Options

The available data suggest that non-phthalate plasticizers present fewer human health hazards than phthalates. This is not the same as saying that there are no health hazards associated with these non-phthalate plasticizers. It is important to remember that plasticizers - phthalates or not - will migrate from products causing building occupants to be inevitably exposed to them. However, some phthalate-free plasticizers raise fewer concerns than others.²⁹

- phthalate plasticizers reviewed.
- disruption and reproductive toxicity.
- environment than DINP.
- to bioaccumulate.30

Vinyl Flooring Paints and Lacquers **Electrical Cabling** Carpet Backing

No, we don't we need Phthalates in building materials.

Avoiding unnecessary plastics, or fragrances and resins removes these toxic chemicals.

• Two bio-based products - Grindsted Soft-n-Safe (made by Danisco/DuPont) and Polysorb ID 37 (made by Roquette) are well studied and appear to be the least toxic of the six non-

• Di-(2-ethylhexyl) terephthalate (DEHT), sold by Eastman Chemical under the trade name Eastman 168, fares better than DINP (Di-isononyl phthalate) in most health and environmental hazard endpoints. However, further study is needed due to uncertainties surrounding endocrine

• Hexamoll DINCH (Diisononyl cyclohexane-1,2-dicarboxylate) also compares favorably overall to DINP, including for carcinogenicity and developmental toxicity. However, DINCH uses DINP in its manufacture and DINCH is less biodegradable and more persistent in the

• Eastman Chemical's dibenzoate plasticizers, sold under the Benzoflex trade name, compare well with DINP, but contain substances that are more ecotoxic and have the potential

Safer Alternative Material

EPDM Type Rubber, Natural Linoleum, Polyolefin flooring Phthalate-free Paints and Coatings Polyethylene or Rubber Sheathed Cables Recycled PET and Glass Carpet Backing

Table 3. Substitute Materials for Common Phthalates Building Components and Interior Finishes

FORMALDEHYDE (ADDED)

WHAT IS IT?

- Formaldehyde is a colorless, strong-smelling, and flammable gas. Pure formaldehyde is extremely reactive. For this reason, it is often mixed into chemical compounds to form a stable substance. Formaldehyde is used in a wide spectrum of products. Examples include shampoo, lipstick, nail polish, some glues, ink, paint and wrinkle-free fabrics, and building materials, such as sealants and wood composites as a binder.³¹
- The US Environmental Protection Agency (EPA) describes formaldehyde as causing '...watery eyes, burning sensations in the eyes and throat, nausea, and difficulty in breathing in some humans. High concentrations may trigger attacks in people with asthma. There is evidence that some people can develop a sensitivity to formaldehyde. It has also been shown to cause cancer in animals and may cause cancer in humans. Health effects include eye, nose, and throat irritation; wheezing and coughing; fatigue; skin rash; severe allergic reactions.³²
- Phenol formaldehyde and urea formaldehyde are two main resins used in composite wood. No added urea formaldehyde (NAUF) and most structural products use phenol-formaldehyde resins that, when cured, do not release significant amounts of formaldehyde back into the environment. Urea formaldehyde can still release some formaldehyde after curing, especially under high heat and humidity.³³

As architects, we care because...

- In construction, formaldehyde is still widely used in pressed-wood products, such as particleboard, plywood, and fiberboard; glues and adhesives; permanentpress fabrics; paper product coatings; and certain insulation materials.³⁴
- Higher formaldehyde levels are usually found in newer construction. The levels decrease over time due to off-gassing. Formaldehyde levels also increase with increases in temperature and humidity.³⁵
- Formaldehyde is a human carcinogen found in composite wood products. Those who live in mobile homes or spend time in portable buildings or classrooms are especially at risk. Gas can be released into the air naturally and increases with temperature rise.

As building owners, we care because...

- Formaldehyde exposure is a special concern for children and the elderly. If children or elderly people are regular occupants in your building, it is important to reduce their exposure to formaldehyde.
 - Formaldehyde has been known to cause cancer in laboratory animals and could possibly cause cancer in humans. There is no known maximum threshold level and no known level below which there is not a threat of cancer. The risk of getting cancer from formaldehyde depends upon the amount and duration of exposure.³⁶

As contractors, we care because...

· Formaldehyde is a chemical used widely to manufacture building materials and products, such as glue in fiberboard. Formaldehyde is also a by-product of combustion and certain other natural processes. Thus, it may be present in substantial concentrations both indoors and out.³⁷ Workers have direct contact with toxic formaldehyde during construction process.

HOW TO MAKE A CHANGE

Because of government standards, a certain level of formaldehyde is allowed in products labeled as "formaldehyde-free". To avoid formaldehyde, you should select products with "no added formaldehyde."

No, we don't need Formaldehyde. possible to avoid these hazards.

Alternative Options

- has in its life-cycle.40

roducts with Formaldeh Wood Binders /

Adhesives Foam Carpet Backin

Paint & Coating Preservative

Laminates

Composite Wood Products

Wood is one of the primary products that contain added formaldehyde and with some effort it is

· Pressed wood adhesive alternatives include those labeled "formaldehyde-free" or "low-emitting" or those made from phenol-formaldehyde (such as oriented strand board, softwood plywood or exterior grade plywood) generally emit lower levels of formaldehyde. However, formaldehydefree can still mean that lower levels of formaldehyde are allowed so requesting "no added formaldehyde (NAF)" is the best course of action.³⁸

• Alternative adhesives may be used in wood products, note that one of the resin feedstocks is epichlorohydrin, which is a probably human carinogen that can result in negative impacts on respiratory and hematological systems. Hardwood plywood and softwood plywood or oriented strand board can be manufactured using alternative adhesives, such as the soy-based resin developed for wood panel applications by Columbia Forest Products.

• Composites of wood fiber and polypropylene thermoplastics are used extensively as substitutes for wood lumber, and are being developed for use in wood panel applications.³⁹

 Soybean protein modified with sodium dodecyl sulfate can also be used as an alternative resin for wood fiber medium density fiberboard preparation.

 Other composite wood products, such as softwood plywood and flake or oriented strandboard are produced for exterior construction use and contain the dark, or red/black-colored phenolformaldehyde (PF) resin. As the name implies, formaldehyde is present in this type of resin also, but composite woods that contain PF resin generally emit formaldehyde at considerably lower rates than those containing Urea Formaldehyde (UF) resin.

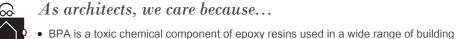
• The most widely used completely formaldehyde-free alternative resins are MDI (methylene diphenyl isocyanate) and PVA (polyvinyl acetate). Despite its name, PVA is not closely related to PVC. Without chlorine in its molecule it avoids many of the worst problems that PVC

 No Added Urea Formaldehyde (NAUF) products does not mean the product is formaldehyde free. No added formaldehyde (NAF) and Ultra Low Emitting Formaldeyhde (ULEF) are better options which are emissions tested and certified by a third party.

 Alternative building materials include those made from non-wood sources (e.g., recycled paper, rammed earth, metal, stone and brick) or solid wood. Agricultural fiber alternatives can come from crops grown specifically for fiber (e.g., kenaf and bagasse) and residues of crops grown for other purposes (e.g., corn stalks/cobs and cotton stalks).⁴¹

yde	Safer Alternative Material
	Methylene diphenyl diisocyanate (MDI) Soy Flour
ıg	Foam Carpet Backing
	Unknown
	Solid Surface, Solid Wood, Tile, Concrete
	Solid Wood

Table 4. Substitute Materials for Common Formaldehyde Building Components and Interior Finishes


BISPHENOL A (BPA)

WHAT IS IT?

- Bisphenol A (BPA) is a chemical produced in large quantities for use primarily in the production of polycarbonate plastics and epoxy resins. BPA can also be found in certain paints or coatings such as powder coat.42
- Scientific studies have linked BPA to a range of health effects including, endocrine disruption (decreased sperm production in men, early puberty in girls, fertility issues, greater chance of miscarriage, endometriosis, stimulation of early mammary gland development, and ovarian dysfunction), obesity, heart disease, thyroid disruption, neurological effects, cancer, insulin resistance, diabetes, food tolerance issues, decreased cognitive function. This chemical leads to genetic issues that impact not just our children, but our grandchildren and future generations by changing our DNA.43

WHY DO WE CARE?

"A poison kills you, a chemical like BPA reprograms your cells and ends up causing a disease in your grandchild that kills him."

- materials, including high performance coatings (paints, floor sealers, and other protective coatings), adhesives and fillers (caulk, grout, mortar, and putty), fiberglass binders, and cement additives.⁴⁴
- Epoxy resins are also in some electronic equipment, industrial tooling applications, and materials used in the art, aerospace and marine industries.⁴⁵
- With 90% of the population testing positive for BPA and a growing body of science raising increasing concern, responsible specifiers do not need to wait for regulatory action, but can take a precautionary approach to protect building occupants and manufacturing and installation workers. Low VOC products are available that can replace epoxy paints and other epoxy-based products.⁴⁶

As building owners, we care because...

• The major human exposure route to BPA is diet, including ingestion of contaminated food and water. Building occupants may have direct contact with BPA because it is used to form epoxy resin coating of water pipes. In older buildings, such resin coatings are used to avoid replacement of deteriorating pipes.⁴⁷

As contractors, we care because...

• In the workplace, while handling and manufacturing products which contain BPA, inhalation and dermal (through skin) exposures are the most probable routes.⁴⁸

HOW TO MAKE A CHANGE

Alternative Options Sometimes found in paints and coatings, there are alternative ways to provide a BPA-free finish, like mill finish or coatings without BPA.

- unknown like BPS.
- are limited or nonexistent. 50
- scientific knowledge. 51

Products with BP **Protective Coati** Epoxy Resins Wire/Electronic She Polycarbonate Pla

No, we don't need BPA and we must be careful not to utilize regrettable substitutions.

• Use BPA-free products. Manufacturers are creating more and more BPA-free products. Look for products labeled as BPA-free. If a product isn't labeled, keep in mind that some, but not all, plastics marked with recycle codes 3 or 7 may be made with BPA.⁴⁹ However, BPA-free may not mean a product is safe as there may be regrettable substitutions that are less safe or more

• BPA is used in the production of polycarbonate (PC) plastics (used in food contact materials, such as baby bottles and food containers) and epoxy resins (used as protective linings for canned foods and beverages and as a coating on metal lids for glass jars and bottles) that come into contact with a wide variety of food. Some alternatives to BPA-containing materials for PC bottles and containers and epoxy can linings are available on the market or proposed for use. However, at present, there appears to be no single replacement for BPA for all food contact applications. Furthermore, data on the safety of some of these replacement materials

• For polycarbonate, replacement materials include those polymers that are currently used to make bottles and containers for food packaging applications, including glass, polypropylene, polyethersulfone, polyethylene terephthalate, high-density polyethylene, polyamide and silicone. An example of a new alternative to polycarbonate is Tritan copolyester.

• It is important to note that any of these new or existing alternative materials would need to be assessed for appropriate functionality and safety using state of the art methodology and

PA	Safer Alternative Material
ting	Numerous alternatives
S	Numerous alternatives
eathing	PET Plastics
astics	PET Plastics

Table 5. Substitute Materials for Common BPA Building Components and Interior Finishes

TOXIC HEAVY METALS **HEXAVALENT CHROMIUM**

WHAT IS IT?

- Hexavalent Chromium (known as Cr⁶ and Hex 6) is a toxic form of chromium in the environment, which occurs naturally but it is usually produced by industrial process. Chromium's ability to easily react with other elements can produce hard coatings. Its properties include corrosion-resistance, durability and hardness.
- Hex 6 is classified as a human carcinogen (cancer-causing), Chronic inhalation of Hex 6 has been shown to increase risk of lung cancer and may also damage the small capillaries in kidneys and intestines. Other adverse health effects associated with Hex 6 exposure, according to the National Institute for Occupational Safety and Health (NIOSH), include skin irritation or ulceration, allergic contact dermatitis, occupational asthma, nasal irritation and ulceration, perforated nasal septa, rhinitis, nosebleed, respiratory irritation, nasal cancer, sinus cancer, eye irritation and damage, perforated eardrums, kidney damage, liver damage, pulmonary congestion and edema, epigastric pain, and erosion and discoloration of one's teeth.17

WHY DO WE CARE?

$\widehat{\baselinethintomath{\mathcal{A}}}$ As architects, we care because...

- It is used in chrome plating and as an alloy in the production of stainless steel, as well as in anti-corrosion and conversion coatings. It is used to produce CCA (chromated copper arsenate) that is applied as a preservative in the treatment of structural timber.¹⁸
- Hexavalent Chromium is a toxic chemistry that is commonly used on building materials for surfaces coating, such as ductwork, steel studs and plumbing fixtures.
- The process of working with Hex 6 content will severely effect human health.

As building owners, we care because...

• Owners create the demand for Hex 6 and have the power to reduce the demand.

- Most industrial output of Hex 6 occurs in water but coal burning also increases air concentration. Most of the chromium in air will eventually settle and end up in waters or soils. We currently lack confirmed knowledge and clear guidelines concerning the level at which Cr⁶ in drinking water becomes a public health hazard. (Refer to the Precautionary Principle)
- A lawsuit concluded that Pacific Gas & Electric (PG&E) had contaminated groundwater in the California town of Hinkley, leading to a high number of cancer cases.19

As contractors, we care because...

- A major source of worker exposure to toxic Cr⁶ occurs during "hot work" such as welding on stainless steel and other alloy steels containing chromium metal.²⁰
- Excess lung cancer found in heavily exposed workers through inhalation of chrome plating, chromate pigment production, use of pigments, spray paints and coatings.²¹
- Workplace exposure to Cr⁶ may cause health effects such as lung cancer, irritation or damage to the nose, throat, and lung (respiratory tract), irritation or damage to the eyes and skin.²²

HOW TO MAKE A CHANGE

Restriction of Hazardous Substances (RoHS) originated in the European Union and restricts the use of specific hazardous materials found in electrical and electronic

products.

Alternative Options

• Metal coil used in steel stud framing and ductwork are available without the Cr⁶ coating upon request. Ask Manufacturers to eliminate the "passivation coating" that contains the hexavalent chromium and ensure that any coatings used are RoHS (Restriction of Hazardous Substances, pronounced: row-haas) compliant. RoHS is a European materials standard that prevents, among other toxins, hexavalent chromium. The restricted materials are hazardous to the environment and pollute landfills, and are dangerous in terms of occupational exposure during manufacturing and recycling.

Table 2. Summary of Non-Chromium Substitutes for Hard and Decorative Chromium Baths²⁴

	Cr ⁶ Possible Substitutes	Notes	Vendor / Product
Electroplated nickel	Nickel-tungsten-boron	Uses conventional plating equipment and operates similar to a conventional nickel plating bath; may be more costly than hex chrome	AMPLATE
	Nickel-tungsten-silicon-carbide	May provide higher plating rates and higher cathode current efficiencies; may provide better throwing power and better wear resistance; may be more costly than hex chrome	Takada Inc.
	Tin-nickel	Good corrosion resistance in strong acids, breaks down above 320C, less wear resistance than hex chrome	
	Nickel-iron-cobalt	Vendor claims twice the wear resistance and 2.6 times the corrosion resistance of hex chrome; same color can be obtained	Shining Surface Systems, METTEX6 http://www.surfacesystems.com
	Nickel-tungsten-cobalt	Contains no chloride or strong chelators; can be used in rack and barrel plating; good corrosion resistance except in marine environments; may tarnish; contains ammonia	Enthone, Enloy Ni-150 http://www.afonline.com/articles/ 00sum03.html
Non-nickel electroplate	Tin-cobalt	Plate on nickel; decorative only	Seaboard Metal Finishing, Seachrome www.seaboardmetalfin.com
		Plate on decorative nickel and nickel alloy; may be used in racking; mildly alkaline	Enthone, Achrolyte
Von-r lectre		Great color, light blue cast; no ammonia; no fluorides; no chlorides	MacDermid, CROMVET
∠ ⊟	Cobalt Phosphorous	Nano-crystalline deposit produces extreme hardness; Plating current waveform modification (electrically mediated deposition) used to produce nanocrystalline deposit.	Integran Technologies, Inc. http://www.integran.com/
Electroless	Electroless nickel -nickel-tungsten -nickel-boron -nickel-diamond composite -nickel-phosphorous -nickel-polytetraflourethylene	Possibly less hardness and abrasion resistance than hex; no build up on corners	Abrite, Millenium series, www.abrite.com MacDermid, NiKlad Sirius Surface Technology Micro Surface Corp.
	HVOF (high velocity oxygenated fuel) thermal sprays	Hardness and wear resistance similar to hex chrome; limited to line-of-sight applications.	
	Physical vapor deposition (PVD) -titanium nitride	Greater hardness than hex chrome with a thinner coating; less corrosion resistance	
spor	Ion beam-assisted PVD	Line-of-sight; thinner coatings give same properties as other thicker coatings	Skion Corp.
Other Methods	Plasma spray-titanium carbide	Aluminum, steel, carbon steel, titanium substrates	A-Flame Corp.
	Chemical vapor deposition	Vacuum deposition; not limited to line-of-sight; resistant to acids; high deposition rate	
	Ion implantation	Ions are implanted – no thickness; non-line-of-sight	Southwest Research Institute
	Powder coating	Vacuum metallization (PVD) – has met OEM wheel industry testing requirements including ASTM B117, GM4472P, GM9508P, GM9682P, and GM6	PermaStartm-Goodrich Technology Corp.
	Laser cladding	Non-line-of-sight; nickel carbide coating	Surface Treatment Technologies

No, we don't need Hexavalent Chromium for hard coating.

• Anodized Aluminum is an alternative material for Chrome Plating.

• Stainless Steel without passivation coating is an alternative for pigments in paint/textiles • Trivalent chromium (known as Cr³) plating is an alternative to Hexavalent Chromium in industrial process. From a health standpoint Cr³ is intrinsically less toxic than Cr⁶. Because of the lower toxicity it is not regulated as strictly, which reduces overhead costs. Other health advantages include higher cathode efficiencies, which lead to less chromium air emissions; lower concentration levels, resulting in less chromium waste and anodes that do not decompose. However, taking into account the Precautionary Principle, not enough information is known about the full human and environmental health effects of Cr^{3, 23}

TOXIC HEAVY METALS LEAD

WHAT IS IT?

- Lead is a naturally occurring element found in small amounts in the earth's crust. While it has some beneficial uses, it can be toxic to humans and animals causing health effects.⁵²
- Much of our exposure comes from human activities including the use of fossil fuels including past use of leaded gasoline, some types of industrial facilities, and past use of lead-based paint in homes. Lead and lead compounds have been used in a wide variety of products found in and around our homes, including paint, ceramics, pipes and plumbing materials, solders, gasoline, batteries, door hardware, children's toys and cosmetics.⁵³
- Lead can effect nearly every organ of the body and as a rule, the more lead you have in your body, the more likely it is that you will have health problems.⁵⁴ The health hazards of lead can be especially worse for children and pregnant women but in all humans can cause behavioral effects, delayed puberty, decreases in cognitive performance, cardiovascular effects, nerve disorders, fertility problems and more.⁵⁵
- The term "lead free" does not mean there is no lead present. When referencing plumbing for example, by law, it allows for .25% lead as calculated across the wetted surface of a pipe. The classification of "no lead" is the goal to aim for.
- Mass exposures as in Flint Michigan's drinking water and political efforts to undermine the reduction of lead and its classification as a human and environmental health hazard has reignited the importance of banning this toxin.

WHY DO WE CARE?

As architects, we care because...

• Some levels of lead can still be found in products we specify from piping to roofing accessories. We have a responsibility to eliminate them and look to the future impacts. Long ago lead was not assumed to be a danger and was included in drinking water pipes. It is up to architects to try to think about what could be the lead of the future that we will one day have wished we stopped using.

<u>&</u>

As building owners, we care because...

• The choices made about the materials used in our buildings can impact everyone who uses them and have consequences for generations to come.

As contractors, we care because...

• Those in occupations related to mining, ironwork or welding, construction, renovation and remodeling activities, smelters, firing ranges, the manufacture and disposal of car batteries, automobile radiator repair, metal shop work, and the manufacture of pottery or stained glass are particularly at risk for lead exposure.⁵⁶

HOW TO MAKE A CHANGE

The term "lead free" does not mean there is no lead present. The classification of "no lead" is the goal to aim for.

Alternative Options

- opposed to "lead-free."
- penetrations.
- may contain lead.

Plumbing Fittings, Pipes, Valves **PVC Roofing Carpet Backing**

Fluid Applied Flooring

· Look for products, particularly metals for piping and door hardware, that have "no lead" as

Find alternative materials where lead may be used as in the case of lead boots around roof

In consumer products, be cautious of plated jewelry, children's toys and even cosmetics that

• Advocate for laws that aim to prevent the use of lead in building and consumer products and that help support ingredients transparency.

Safer Alternative Material Stainless Steel, No lead brass, HDPE Metal Roof, HDPE, TPO, Modified Bitumen, Polymer Flashings Products exist without, consult full ingredients lists Products exist withou, consult full ingredients lists

TOXIC HEAVY METALS MERCURY

WHAT IS IT?

 Mercury is a naturally-occurring chemical element found in rock in the earth's crust, including in deposits of coal. Mercury becomes a problem for the environment when it is released from rock and ends up in the atmosphere and in water. Human activities, however, are responsible for much of the mercury that is released into the environment. The burning of coal, oil and wood as fuel can cause mercury to become airborne, as can burning wastes that contain mercury. This airborne mercury can fall to the ground in raindrops, in dust, or simply due to gravity (known as "air deposition"). The amount of mercury deposited in a given area depends on how much mercury is released from local, regional, national, and international sources. Since mercury occurs naturally in coal and other fossil fuels, when people burn these fuels for energy, the mercury becomes airborne and goes into the atmosphere. These metals and compounds can damage multiple human organs at low doses and are known to be carcinogens.57

- Mercury is a consistent bioaccumulative toxin and considered by the World Health Organization to be one of the top ten chemicals of a major health concern which can have toxic effects on the nervous, digestive and immune systems, lungs, kidneys, skin and eyes.⁵⁸
- Mercury can be commonly found in building products such as concrete, gypsum board, ceiling tiles, adhesives, fluorescent light bulbs and even carpet backing.
- · Recent political efforts to roll back mercury protection laws have made it increasingly necessary to help eliminate the use of this toxic chemical.

As architects, we care because...

• Both concrete and carpeting are some of the most widely used building materials that often contain hazardous mercury. In addition, our industry's continued specification of these products provides a market for the use of the by-products from fossil-fuel fired power plants. In this case, reducing toxins can also serve to help reduce greenhouse gas emissions.

As building owners, we care because...

• Mercury as found in many common building products is a global pollutant, bioaccumulating, mainly through the aquatic food chain, resulting in a serious health hazard for children and adults.59

As contractors, we care because...

• "Occupations that have a greater potential for mercury exposure include manufacturers of electrical equipment...that contain mercury, chemical processing plants that use mercury, metal processing, construction where building parts contain mercury (e.g., electrical switches, thermometers). Family members of workers who have been exposed to mercury may also be exposed to mercury if the worker's clothes are contaminated with mercury particles or liquid." 60

HOW TO MAKE A CHANGE

Alternative Options

- embodied carbon.
- mercury as additives to the backing.

Products with Mercury

Fluorescent, Metal Halide, High Pressure Sodium lighting

Thermostats, Mercury Tilt Switches

Mercury Oxide Batteries Carpet Backing

Tile

Adhesives and Sealants

• Mercury can be a common toxin present in a range of cementitious products. While it can be hard to eliminate mercury content in products like concrete, our efforts to reduce the use of cement can not only help eliminate the toxin concerns but also help to reduce

• For finishes like carpet, ask manufacturers for products that do not contain any fly ash or

Move to the use of LED lighting to eliminate the mercury found in fluorescents.

	Safer Alternative Material
e	LED Lighting
у	No Mercury Thermostats, Electronic Type and Mechanical Switches
	Zinc Air or Silver Oxide Batteries
	Products Exist Without, Consult Full Ingredients Lists
	Products Exist Without, Consult Full Ingredients Lists
	Products Exist Without, Consult Full Ingredients Lists

PER- AND POLYFLUORALKYL SUBSTANCES PER- AND POLYFLUORALKYL SUBSTANCES (PFAS)

WHAT IS IT?

PFAS and related chemicals are notoriously known as "forever chemicals" meaning that once they are made, they will never go away from our earth.

- **PFAS** are a large, complex, and ever-expanding group of manufactured chemicals that are widely used to make fluoropolymer coatings and products that resist heat, oil, stains, grease, and water. Best known are PFOS, formerly used to make DuPont's Teflon, and PFOA, formerly in 3M's Scotchoard.
- Very low exposure to some PFAS chemicals has been linked to **cancer, thyroid disease.** weakened childhood immunity and many other health problems.⁶¹
- PFAS molecules are made up of a chain of linked carbon and fluorine atoms. Because the carbon-fluorine bond is one of the strongest, these chemicals do not degrade in the environment. In fact, scientists are unable to estimate an environmental half-life for PFAS, which is the amount of time it takes 50% of the chemical to disappear.⁶² These substances don't break down over time. That means they build up in the environment and in our bodies.
- The sheer volume of different PFAS and their use in a huge variety of products makes it daunting, if not practically possible, to identify all the potential forms, not to mention possible situations where they might be found. Because of the wide spread usage, background levels of PFAS are truly ubiquitous in the environment and in humans.⁶³

WHY DO WE CARE?

\bigotimes As architects, we care because...

- Perfluoroalkyls have been used in surface protection products such as carpet and clothing treatments and coating for paper and cardboard packaging. They have also been used in fire-fighting foams. 64
- They are often used in fabric stain repellents and this level of seeming protection may not be necessary when care or spot cleaning can be a safer alternative.

As building owners, we care because...

- PFAS are found in a wide range of consumer products that people use daily such as cookware, pizza boxes and stain repellants. Most people have been exposed to PFAS. Certain PFAS can accumulate and stay in the human body for long periods of time. There is evidence that exposure to PFAS can lead to adverse health outcomes in humans.65
 - Drinking water can be a source of exposure in communities where these chemicals have contaminated water supplies.

As contractors, we care because...

- There are four major known sources of PFAS: fire training/fire response sites/ airports, industrial sites, landfills, and wastewater treatment plants/biosolids.
- People who work at PFAS production facilities, or facilities that manufacture goods made with PFAS, may be exposed in certain occupational settings or through contaminated air

HOW

TO MAKE A CHANGE

No. we do not need PFAS

Alternative Options

- workers, consumers, and public heatlh.
- eliminate use of them completely.

To halt the ongoing buildup of PFAS in the environment, an international research team proposes that society move away from these "forever chemicals." It is calling for an orderly elimination of PFAS-containing products from commerce.⁶⁶

• Look at the ingredients. There are many everyday products that consumers can choose not to use if it contains this class of harmful chemicals. PFAS may be found in any product that is advertised as waterproof, stain resistent, and heat resistent.

• Substitution of hazardous materials is a fundamental measure to reduce risks to environment,

• Consider a change to expectations and fabric care procedures. Instead of using dangerous forever stain repellent chemicals, is it acceptable to spot clean when needed?

Research is needed to understand alternatives for PFAS. The best course of action is to

ALKYLPHENOLS AND RELATED COMPOUNDS **ALKYLPHENOLS (APE'S)**

WHAT IS IT?

- Alkylphenols and their ethoxylates are a family of chemicals used mainly as surfactants in commercial detergents and cleaners. They are also used in paints, pesticides and other agro chemicals, personal-care products, in industrial processes, and oilfields. Their breakdown products include persistent toxic chemicals that build up in fish and wildlife.⁶⁷
- Alkylphenol ethoxylates (APEs), a group of chemicals that includes nonylphenol ethoxylates (NPEs) and octylphenol ethoxylates (OPEs), are chemicals of concern commonly used as surfactants in acrylic paint. According to the U.S. EPA, NPEs represent approximately 80% -85% of the volume of APEs.
- APEs are among the chemicals found at the highest concentrations in U.S. house dust. They are also found in air, drinking water, and food. As a result, APEs have been detected in human urine, cord blood, and breast milk.
- There are concerns about the effects of alkylphenols on human health, including reproductive, nervous system, and immune effects.⁶⁸ Alkylphenols are endocrine disruptors that have the ability to mimc or disrupt estrogen hormones. Biological processes that are generally controlled by estrogen, such as cell communication and protein formation, can be altered when cells are exposed to alyphenols.⁶⁹

WHY DO WE CARE?

As architects, we care because...

- Alkylphenols can be found in building cleaning products, coatings, adhesives, paints, fire retardants, rubber and thermoplastics.
- Nonylphenol Ethoxylates (NPEs) are surfactants commonly added to paints to help the pigments stay evenly spread throughout the paint base. They have been banned in the European Union, Denmark, and Japan.⁷⁰

&

As building owners, we care because...

• Studies show that low levels of APEs have been detected in indoor dust and primarily affects toddlers and teenagers. Though the daily exposure doses are low, there is a cause for concern as these surfactants are not regulated in many developing countries and their use may be increasing ⁷¹

As contractors, we care because...

• During use of specialty paints that contain nonylphenol ethoxylates, contractors may be exposed to NPEs during the mixing of paint and spray application through inhalation and dermal exposure.72

HOW TO MAKE A CHANGE

No, we don't need alkylphenols.

Alternative Options

- up, or any other safe dispoal method.

• Avoid products containing the following alkylphenols: propylphenol, butylphenol, amylphenol, heptylphenol, octyphenol, nonylphenol, dodecylphenol, methlyphenol and ethylphenol.

• Choose APE-Free Interior Paint. Benjamin Moore and Sherwin-Williams offer APE-free paint in some of their standard product lines. There are likely other manufacturers who have eliminated APEs. Ask your favorite paint supplier if they are in this group.⁷³

• Dispose of household chemicals properly, by using a free household hazardous waste pick-

• Most concerns are focused on alkylphenol ethoxylates (APEs), which bioaccumulate and have been shown to cause endocrine disruption in fish. APEs are in cleaning products that end up in waterways from wastewater treatment effluent. Some alkylphenols, especially nonylphenol, are being phased out in Europe, and more research into their impacts is needed. A few governments with environmentally preferable purchasing programs restrict or ban APEs.⁷⁴

WOOD TREATMENTS **CREOSOTE OR PENTACHLOROPHENOL**

WHAT IS IT?

- Creosote is a general term covering coal tar creosote, coal tar, and coal tar pitch. Coal tar creosote is the most common mixture, and is widely used as a wood preservative in the U.S. As many as 10,000 chemicals may comprise this mixture.⁷⁵
- Breathing vapors of the creosotes, coal tar, coal tar pitch, or coal tar pitch volatiles can cause irritation of the respiratory tract. Eating large amounts of creosote (any form) may cause a burning in the mouth and throat and stomach pains. Long-term exposure to low levels of creosote, especially direct contact with skin during wood treatment or manufacture of coal tar creosote-treated products, has resulted in skin cancer and cancer of the scrotum. Cancer of the scrotum in chimney sweeps has been associated with long-term skin exposure to soot and coal tar creosotes.76
- **Pentachlorophenol** is a manufactured chemical which is a restricted use pesticide and is used industrially as a wood preservative for utility poles, railroad ties, and wharf pilings. Exposure to high levels of pentachlorophenol can cause increases in body temperature, liver effects, damage to the immune system, reproductive effects, and developmental effects.77
- The general populations can be exposed to very low levels of pentachlorophenol in contaminated indoor and outdoor air, food, drinking water and soil.

WHY DO WE CARE?

As architects, we care because...

• Wood preservative products are those that claim to control wood degradation problems due to fungal rot or decay, sapstain, molds, or wood-destroying insects. Both the treatment process and the use of treated-products can result in exposure to pesticides for both people and the environment.78

₩ 6

As building owners, we care because...

- Living in treated-wood houses that may result in air or skin contact with creosote. Humans can also be exposed by drinking water contaminated by a hazardous waste site.
 - Pentachlorophenol was a widely used pesticide for a long time. Today its use is restricted and it can only be used by certified applicators. You may have old containers of pesticides in your attic, basement, or garage that contain pentachlorophenol. Removing these old containers will reduce your risk of exposure to pentachlorophenol.79

As contractors, we care because...

- Workers in the wood preservative, coke-producing, or asphalt industries can be exposed in the manufacturing process. Installers that use creosote-treated wood in building fences, bridges, or railroad tracks, or installing telephone poles risk exposure.
- People who work or live near a wood treatment facility or in the production of utility poles, railroad ties, or wharf pilings may be exposed to pentachlorophenol in the air or by coming in contact with the treated wood.⁸⁰

HOW TO MAKE A CHANGE

No, we don't need toxic wood treatments.

Alternative Options

- treatment chemicals listed here.

• Research groups have been studying more environmentally friendly alternatives to wood preservatives. It's best to discuss with your structural engineer and wood supplier about alternative options that do not contain Red List chemicals. Often, it is the final supplier or seller that provides the wood treatment. Specifiers are encouraged to speak with these suppliers about what treatments are used and find safer alternates when needed.

 Contact both your wood supplier and wood treatment manufacturer about options and always request a full list of ingredients. Be sure to ask the manufacturer about avoiding the two wood

REFERENCES

- 1. Healthy Building Network, PVC in Buildings: Hazards and Alternatives, http://healthybuilding.net/ uploads/files/pvc-in-buildings-hazards-and-alternatives.pdf
- 2. Bill Walsh, Vinyl Building Products Drive Asbestos Use in USA, http://www.healthybuilding.net/ news/2017/03/22/vinyl-building-products-drive-asbestos-use-in-usa
- 3 Niaz Dorry, Building As If Breathing Mattered: PVC's Contribution To Asthma, http://www. healthybuilding.net/news/2004/08/11/building-as-if-breathing-mattered-pvcs-contribution-to-asthma#sthash. goZyluHU.dpuf
- 4. Healthy Building Network, PVC in Buildings: Hazards and Alternatives
- 5. Update on the Environmental Health Impacts of Polyvinyl Chloride (PVC) as a Building Material: Evidence from 2000-2004
- 6. Richard M. Duffy, letter to Concord, MA school board, April 14,1998, http://www.usgbc.org/Docs/LEED_ tsac/PVC/CMPBSRebuttal%20Attach%203-Fire.pdf, p7.
- 7. Healthy Building Network, PVC in Buildings: Hazards and Alternatives
- 8. Perkins+Will, What's New (and What's Not) With PVC, http://perkinswill.com/sites/default/files/ PerkinsWill_PVC_2015_Whitepaper.pdf
- Building Green, Flame Retardants Under Fire, https://www.buildinggreen.com/feature/flame-retardants-9. under-fire
- 10. Herbstman JB, Sjödin A, Kurzon M, Lederman SA, Jones RS, Rauh V, et al. Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect. 2010 May;118(5):712-9.

Harley KG, Marks AR, Chevrier J, Bradman A, Sjödin A, Eskenazi B. PBDE concentrations in women's serum and fecundability. Environ Health Perspect. 2010 May;118(5):699-704.

Meeker JD, Johnson PI, Camann D, Hauser R. Polybrominated diphenyl ether (PBDE) concentrations in house dust are related to hormone levels in men. Sci Total Environ. 2009 May:407(10):3425-9.

Turyk ME, Persky VW, Imm P, Knobeloch L, Chatterton R, Anderson HA. Hormone disruption by PBDEs in adult male sport fish consumers. Environ Health Perspect. 2008 Dec;116(12):1635-41.

11. Lisa Marchi, Flame Retardants: Health Effects Summary

24. Ibid.

- 12. Alex Stadtner, Toxic Building Materials in Residential Construction, http://healthybuildingscience. com/2012/11/27/toxic-building-materials-in-residential-construction
- 13. Center for Environmental Health, Safer Furniture Flammability Standard and Flame Retardant Chemicals Fact Sheet, http://www.ceh.org/wp-content/uploads/FR-Safer-Furniture-Fact-Sheet.pdf
- 14. Kellyn S. Betts, New Thinking on Flame Retardants, www.ncbi.nlm.nih.gov/.../PMC2367656/
- 15. Joe Thornton, Environmental Impacts of Polyvinyl Chloride Building Materials, Healthy Building Network, 2002
- 16. Green Flame Retardants, https://www.greenflameretardant.com/index.html
- 17. Larry West, What Are the Health Risks Associated with Hexavalent Chromium? http://environment. about.com/od/healthenvironment/f/Hexavalent-Chromium-Health-Risks.htm
- 18. Greenspec, Hexavalent chromium (aka Chromium-6), http://www.greenspec.co.uk/building-design/chromium-6-environment-human-health/
- 19. Wikipedia, Hinkley groundwater contamination, https://en.wikipedia.org/wiki/Hinkley_groundwater_contamination
- 20. United States Department of Labor, Occupational Safety and Health Administration, https://www.osha. gov/SLTC/hexavalentchromium/
- 21. L. S. Levy, P. A. Martin and P. L. Bidstrup British Journal of Industrial Medicine, Vol. 43, No. 4 (Apr., 1986), pp. 243-256
- 22. OSHA Fact Sheet, Health Effects of Hexavalent Chromium, https://www.osha.gov/OshDoc/data General_Facts/hexavalent_chromium.pdf
- 23. Northeast Waste Management Officials' Association, Pollution Prevention Technology Profile Trivalent Chromium Replacements for Hexavalent Chromium Plating, November 18, 2003, http://www. newmoa.org/prevention/p2tech/TriChromeFinal.pdf

- 25. G.O. Adewuyi, and R.A. Olowu, High Performance Liquid Chromatographic (HPLC) Method for Comparison of Levels of some Phthalate Esters in Children's Toys and Their Health Implications, http:// www.akamaiuniversity.us/PJST13 2 251.pdf
- 26. Green Spec, Phthalates, http://www.greenspec.co.uk/building-design/pthalates-environment-health/
- 27. Global Health & Safety Initiative, Toxic Chemicals in Building Materials, http://healthybuilding.net/ uploads/files/toxic-chemicals-in-building-materials.pdf
- 28. E.A. Kerle, J.J. Jenkins, and P.A. Vogue, Understanding pesticide persistence and mobility for groundwater and surface water protection, http://pep.wsu.edu/wp-content/uploads/sites/7/2015/05/ em8561 Pesticide Persistence.pdf
- 29. Healthy Building Network, Phthalate-free Plasticizers in PVC, https://www.healthybuilding.net/content/ phthalate-in-pvc-executive-summary
- 30. Ibid
- 31. New Jersey Department of Health, Hazardous Substance Fact Sheet, http://nj.gov/health/eoh/rtkweb/ documents/fs/0946 pdf
- 32. Green Spec, Formaldehyde, http://www.greenspec.co.uk/building-design/formaldehyde-health-environment/
- 33. Brent Elrich, Building Green, Composite Wood: EPA, California, and LEED V4 Requirements. Vol. 27. Issue 3. 6 March 2018.
- 34. N.C. Department of Labor Occupational Safety and Health Division, Formaldehyde Fact Sheet, http:// www.nclabor.com/osha/etta/A_to_Z_Topics/HCHO.pdf
- 35. Gravelle Building Environments Inc. Ottawa Air Quality Assessments, FORMALDEHYDE, https:// www.gravellebuildingenvironments.com/formaldehyde
- 36. Green Spec, Formaldehyde, http://www.greenspec.co.uk/building-design/formaldehyde-health-environment/
- 37. James Armstrong and Andy Walker, Formaldehyde Use in Building Construction, Reed Construction Data
- 38. Toxics Use Reduction Institute, Formaldehyde Facts/Alternatives, http://www.turi.org/TURI_Publications/ TURI_Chemical_Fact_Sheets/Formaldehyde_Fact_Sheet/Formaldehyde_Facts/Alternatives

39. Ibid

- 40. Healthy Building Network, Formaldehyde and Wood, www.healthybuilding.net/formaldehyde/
- 41. Toxics Use Reduction Institute, Formaldehyde Facts/Alternatives
- 42. National Toxicology Program, NTP BRIEF ON BISPHENOL A, http://aseh.net/teaching-research/teaching-unit-better-living-through-chemistry/historical-sources/lesson-4-1/National%20Toxicology%20Program-BPA-DraftBrief-4,14,08.pdf
- 43. Marilee Nelson, BPA in Plastics and Coatings: Tips to Remove, Replace, and Restore, https://branchbasics.com/blog/2015/06/bpa-in-plastics-and-coatings-remove-and-replace/
- 44. Global Health & Safety Initiative, Bisphenol A in Building Materials: High Performance Paint Coatings, http://healthybuilding.net/uploads/files/bisphenol-a-in-building-materials-high-performance-paint-coatings. pdf
- 45. Ibid
- 46. Ibid
- 47. Savita G. Pawara, I.L. Pardeshib and S.G. Rajputc, Convenience Foods and Its Packaging Effects on Human Health: A Review, http://www.jakraya.com/journal/pdf/4-jrefArticle_1.pdf
- 48. Stacey E Anderson and B Jean Meade, Potential Health Effects Associated with Dermal Exposure to Occupational Chemicals, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270264/
- 49. Medical Center, The University of Mississippi, What is BPA? Should I be worried about it? https:// www.ummchealth.com/healthlibrary/Article.aspx?articleid=FAQ-20058331
- 50. Food and Agriculture Organization of the United Nations, World Health Organization, Joint FAO/ WHO Expert Meeting to Review Toxicological and Health Aspects of Bisphenol A, 1-5 November 2010, Ottawa, Canada
- 51. Ibid
- 52. U.S. Environmental Protection Agency, Learn about Lead, https://www.epa.gov/lead/learn-about-lead
- 53. Ibid

- 55. Ibid
- 56. Ibid
- 58. World Health Orgnization, Mercury and Health, https://www.who.int/news-room/fact-sheets/detail/ mercury-and-health
- 60. U.S. Department of Health and Human Services, Toxilogical Profile for Mercury, https://www.atsdr.cdc. gov/toxprofiles/tp46.pdf
- 61. Environmental Working Group, PFAS Contamination in the U.S., https://www.ewg.org/interactive-maps/ pfas_contamination/
- 62. National Institute of Environmental Health Sciences, Perfluoroalkyl and Polyfluoroalkyl Substances, https://www.niehs.nih.gov/health/topics/agents/pfc/index.cfm

- apes-troubling-bubbles/
 - 68. Ibid
- paints

54. National Institute of Environmental Health Sciences, Lead, https://www.niehs.nih.gov/health/topics/ agents/lead/index.cfm

- 57. Paul B Tchounwou, Clement G Yedjou, Anita K Patlolla, and Dwayne J Sutton. Heavy Metals Toxicity and the Environment, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144270/#R2
- 59. Bose-O'Reilly, S., McCarty, K. M., Steckling, N., & Lettmeier, B. (2010, September). Mercury exposure and children's health, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096006/
- 63. Thomas, Ryan, Solving the PFAS Puzzle, https://www.ghd.com/en/about-us/solving-the-pfas-puzzle.aspx
- 64. Agency for Toxic Substances and Disease Registry, Perfluoroalkyls, https://www.atsdr.cdc.gov/ substances/toxsubstance.asp?toxid=237
- 65. EPA, Basic Information on PFAS, https://www.epa.gov/pfas/basic-information-pfas#important
- 66. Hogue, Cheryl (2019, November). How to say goodbye to PFAs, Chemical & Engineering News, https://cen.acs.org/environment/persistent-pollutants/say-goodbye-PFAS/97/i46
- 67. Toxic Free Future, APEs: Troubling Bubbles, https://toxicfreefuture.org/key-issues/chemicals-of-concern/

69. Breast Cancer Prevention Partners, Alkylphenols, https://www.bcpp.org/resource/alkylphenols/ 70. Healthy Materials Lab, Interior Paints, https://healthymaterialslab.org/material-collections/no-and-low-voc-

71. Science Direct, Alkylphenols and alkylphenol ethoxylates in dust from homes, offices and computer laboratories: Implication for personal exposure via inadvertent dust ingestion, https://www.sciencedirect. com/science/article/pii/S2405665017300203

72. EPA, Nonylphenol (NP) and Nonylphenol Ethoxylates (NPEs), https://www.epa.gov/assessing-andmanaging-chemicals-under-tsca/nonylphenol-np-and-nonylphenol-ethoxylates-npes

TOWARD A **HEALTHIER** AND **LOWER-IMPACT** FUTURE

February 2021 The Miller Hull Partnership, LLP